New strategies to create technologically relevant superomniphobic coatings on sol-gel base

A. Drechsler1, K. Estel1, A. Caspari1, C. Bellmann1, J. Harenburg2, F. Meier3, M. Zschuppe2

1 Leibniz Institute for Polymer Research Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
2 FEW Chemicals GmbH, ChemiePark Bitterfeld Wolmari, Anlay A – Technikumstraße 1, 06766 Wolmari, Germany
3 Bundesministerium für Bildung und Forschung

1006 Dresden, Germany

www.ipfdd.de

preparation of the sol-gel coatings

Background

- superomniphobic, self-cleaning surface coatings are interesting for various applications (windows, solar panels, facades)
- superhydrophobicity is obtained by hydrophobic surfaces with high roughness (hierarchical or fractal structure) [1]: problem: mechanical stability
- superoleophobicity requires high roughness, high aspect ratio and re-entrant structures [2, 3]

Goal

- creation of superhydrophobic, oleophobic coatings by technologically relevant sol-gel process [4] with nanofillers
- systematic investigation of the correlations between surface topography / roughness and wettability
- test of mechanical stability

Methods

- preparation of coatings by sol-gel process with functional nanofillers
- investigation of morphology and roughness on different length scales by confocal microscopy, scanning electron microscopy (SEM), scanning force microscopy (AFM)
- measurement of advancing and receding contact angles of water, water-ethanol mixtures and n-hexadecane
- wet abrasion test similar to DIN EN ISO 11998

composition of the sol-gel coatings

- base coat: blend of "H 1006", inorganic pigments, polyethylene
- sprayed, cross-linked (150°C)
- roughness adjusted by particle size, mixing ratio

coating R1: advancing and receding contact angles of water-ethanol mixtures vs. liquid surface tension γ_l

coating R1 after wet abrasion test vs. root mean square roughness r_a

coating wear of the sol-gel coatings after wet abrasion test vs. root mean square roughness r_a

coating S4 after abrasion test

coating S1 after abrasion test

coating S7 after abrasion test

References

Acknowledgment

This work was funded by the German Federal Ministry of Education and Research within the project NanoStruk - Superhydrophobe und oleophobe Beschichtungen mit Nanolacken auf Edelstahl®, support code 03K0154B.